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Physically based hydrological models are complex tools that provide a complete description of the differ-
ent processes occurring on a catchment. The TOPMODEL-based Land–Atmosphere Transfer
Scheme (TOPLATS) simulates water and energy balances at different time steps, in both lumped and dis-
tributed modes. In order to gain insight on the behavior of TOPLATS and its applicability in different con-
ditions a detailed evaluation needs to be carried out. This study aimed to develop a complete evaluation
of TOPLATS including: (1) a detailed review of previous research works using this model; (2) a sensitivity
analysis (SA) of the model with two contrasted methods (Morris and Sobol) of different complexity; (3) a
4-step calibration strategy based on a multi-start Powell optimization algorithm; and (4) an analysis of
the influence of simulation time step (hourly vs. daily). The model was applied on three catchments of
varying size (La Tejeria, Cidacos and Arga), located in Navarre (Northern Spain), and characterized by dif-
ferent levels of Mediterranean climate influence. Both Morris and Sobol methods showed very similar
results that identified Brooks–Corey Pore Size distribution Index (B), Bubbling pressure (wc) and
Hydraulic conductivity decay (f) as the three overall most influential parameters in TOPLATS. After
calibration and validation, adequate streamflow simulations were obtained in the two wettest
catchments, but the driest (Cidacos) gave poor results in validation, due to the large climatic variability
between calibration and validation periods. To overcome this issue, an alternative random and
discontinuous method of cal/val period selection was implemented, improving model results.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

The intense development in the field of hydrological simulation
offers researchers worldwide dozens of models capable of simulat-
ing streamflow and other processes, at different time and spatial
scales (e.g., Burnash et al., 1973; Chiew and McMahon, 2002;
Brocca et al., 2011). Although they can easily be applied on differ-
ent conditions (in terms of climate, catchment size or time-step),
achieving the best simulation results depends largely on the users’
knowledge of model structure and available tools to maximize the
accuracy of the results (Khakbaz et al., 2012). Thus, achieving opti-
mal calibrated and validated streamflow values requires, first,
detailed sensitivity analyses to provide the modeler with objective
criteria to identify the parameters to include on the calibration
procedure and next, calibration and validation strategies to find
the parameter values that optimize model results (Van
Werkhoven et al., 2009). Model performance and optimal parame-
ter values will depend then largely on: (1) catchment size, (2) rain-
fall pattern and climate conditions, (3) modeling time-scale, and
the suitability of model structure to all of them (Demaria et al.,
2007).

Sensitivity Analysis (SA) techniques can identify influential
parameters, i.e. those whose uncertainty reduction will have the
most significant impact on improving model performance (Gan
et al., 2014) and provide model users with useful information to
reduce calibration dimensionality (Garambois et al., 2013). If some
insensitive parameters are identified through SA, they can be fixed
reasonably at given values over their variation range. Thus, reduc-
ing calibration computational cost without decreasing model
performance.

Sun et al. (2012) classified SA methods into three types: (1)
local, (2) screening and (3) global, depending on the way parame-
ters were perturbed. Local methods quantify the percentage
change of outputs due to the change of model inputs relative to
their baseline (nominal) values (Tang et al., 2007). These methods,
also referred to as One-at-A-Time (OAT), evaluate the response of
output variables to fractional changes in one single input parame-
ter and are therefore less efficient on complex models. Even on
models where parameters are independent, the combination of
single-parameter influences can make local methods to fail on
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capturing model behavior due to non-linearity of model response
(Norton, 2009). Screening methods also analyze the model
response to a change in the inputs by varying one parameter at a
time, but they provide a global sensitivity measure, since different
elementary effects (EE) for each parameter are calculated and aver-
aged (Campolongo et al., 2011). They are commonly applied to
cases where a large number of parameters needs to be analyzed,
or to computationally expensive models where more demanding
quantitative techniques might lead to extended simulation times.
Finally, global methods, vary simultaneously all studied parame-
ters within their defined parameter space, thus providing informa-
tion on both individual sensitivity and parameter interaction
degrees. Global methods look at the entire input parameters distri-
bution, using specifically designed Monte Carlo sampling tech-
niques of various levels of sophistication, but their application to
computationally demanding models might be constrained due to
the large number of model runs required (Song et al., 2015). Global
methods are recognized as appropriate for hydrological modeling,
as they have to evaluate nonlinear processes and high parameter
and data uncertainty due to spatial heterogeneity (Spear et al.,
1994). Global methods include the following groups (Tang et al.,
2007): (1) Regional SA (Young, 1978), (2) Bayesian SA (Oakley
and O’Hagan, 2004), (3) regression based approaches (Spear
et al., 1994), and (4) variance decomposition methods (Saltelli
et al., 2000). Screening and global SA methods include two steps:
first, a strategy is used to sample the parameter space (i.e. Design
of experiment, DoE) and next a numerical measure is used to quan-
tify the impacts of sampled parameters on model output (Wagener
and Kollat, 2007).

Once the most sensitive parameters of a model have been iden-
tified through SA procedures, they need to be calibrated, i.e. esti-
mated through an inverse method so that observed and
predicted output values are in agreement (Zhang et al., 2009).
Therefore, successful application of any hydrological model
depends on how accurately the model is calibrated (Duan et al.,
1992). Although model calibration used to be a labor intense task
that depended largely on modeler knowledge and experience,
nowadays computers allow automatic calibration techniques.
These are commonly optimization algorithms that search for a
set of parameters values that minimize the model prediction error
relative to available measured data for the system being modeled
(Tolson and Shoemaker, 2007). Gupta et al. (1998) pointed out that
automatic calibration success depends largely on three aspects: (1)
adequate calibration data (mainly in terms of data length and cli-
mate variability contained), (2) the objective function (maximum
likelihood functions for measuring the ‘‘closeness” of the model
and the data), and (3) the selected optimization algorithm. How-
ever, some studies reported difficulties in finding unique (global)
optimum parameter values due to parameter nonuniqueness or
equifinality, parameter correlation, or other limitations (Duan
et al., 1992).

Calibration of hydrological models for areas with irregular rain-
fall patterns, such as Mediterranean ones, implies an extra effort in
terms of model adaptability and data availability (Loaiza-Usuga
and Pauwels, 2008). Several authors (Gan and Biftu, 1996; Li
et al., 2010; Perrin et al., 2007) noted that arid catchments are gen-
erally more difficult to model than humid ones due to the com-
plexity and variability of hydrological processes there. This can
be related to model’s response to intense rainfall events and to
large inter-annual rainfall variability. Conventional continuous cal-
ibration and validation period selection (i.e., selection of a calibra-
tion period of n years, followed by a validation period of m years)
may be a limitation when large differences on climate variables
are found among both periods. Thus, alternative (random and dis-
continuous) period selection methods that lead to a similar calibra-
tion and validation climatological conditions and to a minimum of
high flows included on the calibration period are worth being
explored (Kim and Kaluarachchi, 2009). As stated by (Sorooshian
and Gupta, 1983) it is not the length of the data series used but
the information contained in it and the efficiency with which that
information is extracted that are important. Random sampling
approaches are expected to overcome different difficulties, which
could include: (1) data availability discontinuity (i.e. Kim and
Kaluarachchi, 2009), (2) lack of data series long enough to achieve
proper calibration and validation results, or (3) large climate vari-
ability between calibration and validation periods.

Optimization algorithms used on hydrological model calibra-
tion are divided into local (Tolson and Shoemaker, 2007) and global
search methods (Duan et al., 1993). One of the first optimization
algorithms was proposed by Powell (1964), and was applied for
the first time to hydrological modeling by Kobayashi and
Maruyama (1976). This algorithm is a local, derivative-free method
where one parameter value is changed at-a-time. Chen et al. (2005)
applied a modified multi-start version of the Powell method for
model calibration, which is also implemented on this study.

Hydrological models cover a range of variability in terms of
parameter complexity, running time-scale, conceptual structure
and spatial distribution design (lumped and distributed). Accord-
ing to these characteristics, they may offer better results under cer-
tain terrain or climate conditions. Among them, there has been a
significant development of catchment models based on the TOP-
MODEL concept (Beven and Kirkby, 1979). From this initial concep-
tualization, Famiglietti and Wood (1994), started the development
of a full hydrological catchment model that incorporated a
separate computation of water and energy balances. This model
was called TOPMODEL-based Land–Atmosphere Transfer
Scheme (TOPLATS).

TOPLATS can be run at any user-specified time step, from daily
(Bormann et al., 2007) to hourly (Loaiza-Usuga and Pauwels, 2008),
or even on less than a minute time-step (Seuffert et al., 2002).
While this permits the model to be applied for an extensive range
of purposes, it can also affect model performance, especially in
terms of runoff and soil moisture processes simulation. It has been
applied on a wide range of locations worldwide but TOPLATS sim-
ulations on Mediterranean catchments was only reported in
Loaiza-Usuga and Pauwels (2008) and in Loaiza-Usuga and Poch
(2009). The complexity of TOPLATS makes it necessary to use effi-
cient SA methods to get a better understanding of its behavior. To
the authors’ knowledge, no comprehensive SA of TOPLATS has been
performed and published so far. Thus, a detailed SA of the different
hydrological processes calculated by TOPLATS could be a worth-
while contribution to improve the understanding and to facilitate
the calibration of this model.

This study aims to evaluate TOPLATS as a streamflow simula-
tion tool in Mediterranean catchments. This evaluation includes a
detailed SA of TOPLATS model to identify influential parameters
that should be included on a subsequent calibration/validation
(CAL/VAL) approach, so that optimum streamflow simulation is
achieved. This is done for three catchments of different sizes
located on an area of Mediterranean climate, and considering dif-
ferent modeling time-steps. This broad objective expands to
achieve the following specific objectives: (1) to provide a detailed
review of previous works carried out with TOPLATS, specifically
those related with model parameterization and calibration, (2) to
develop a sensitivity analysis of selected parameters on: surface
runoff, baseflow, evapotranspiration, soil moisture patterns and
streamflow simulation (discriminating between peaks, average
and low flows), (3) to compare two SA methods of different com-
plexity and computational requirements, (4) to evaluate the per-
formance of an optimization algorithm for model calibration at
different time-scale simulations (daily and hourly), (5) to appraise
the influence of continuous or random period selection for
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calibration and validation purposes, and (6) to evaluate model
streamflow simulation performance on Mediterranean catchments
of varying size and climate conditions (at daily and hourly time-
step).

2. Study sites

This study is focused on three catchments located in the pro-
vince of Navarre (Northern Spain): La Tejeria, Cidacos and Arga
(Fig. 1). They all belong to the Ebro river basin (86,000 km2), one
of the major Spanish rivers, which flows into the Mediterranean
Sea. Catchments were selected with the objective of covering a
range of catchment sizes, climate conditions, and contrasting
topography. Navarre is divided into Atlantic (10% of the area) and
Mediterranean basins (90%). In the latter, characterized by a sub-
humid Mediterranean climate, rainfall decreases notably as one
heads south. Study sites and their measuring stations location
are shown in Fig. 1.

2.1. La Tejeria catchment

La Tejeria is a micro-catchment, part of the Agricultural Exper-
imental Catchment Network developed and maintained by the

Government of Navarre (http://cuencasagrarias.navarra.es/index.

cfm). It has a total extension of 1.59 km2, with a gauging station
and an automatic meteorological station (10 min basis) installed
at the outlet. Elevation ranges from 496 to 649 m. The main flow
channel has a length of 1.9 km, and the average slope within the
catchment is 12%. Climate conditions in this catchment are inter-
Fig. 1. Location, topography, hydrological features and instrumentation of
mediate between the other two catchments. In La Tejeria, average
rainfall during the 2000–2012 period was 744 mm/year, although
the annual rainfall can vary significantly from year to year. During
the study period, mean daily temperature was 12.5 �C and relative
humidity 73%. The watershed is underlined by marls and sand-
stones of continental facies. The prevailing soil class is Typic Calcix-
erepts (NRCS-USDA, 2014), covering 41% of the watershed and
located on eroded hillslopes. These soils are relatively shallow
(0.5–1.0 m deep) and the upper horizon has a clayey-silty texture
(Casalí et al., 2008). Catchment’s major land uses are: winter cere-
als, sunflower, and fallow land (total 92%), riparian vegetation (7%)
and urban areas (1%). Further details on the catchment’s instru-
mentation, soil type, land use and hydrological behavior can be
found in Casalí et al. (2008). Previous research works on this catch-
ment focused on soil moisture retrievals (Alvarez-Mozos et al.,
2006) and soil erosion evaluation (Casalí et al., 2008).
2.2. Cidacos catchment

Cidacos river flows into the Aragón river, one of the main tribu-
taries of Ebro. At Olite hydro station Cidacos has a catchment area
of 258 km2. Elevation ranges from 380 m to 1156 m. Main river’s
length is approximately 25 km, and catchment’s mean slope is
18% (35% of the catchment presents flat-gentle slope areas
(<10%) and 19% of the catchment is characterized by steep slopes
(>30%). Climate in the area is defined as mild-Mediterranean, with
high rainfall variability that caused dramatic oscillations in the
annual discharge between 0.4 and 39 hm3, with an average value
of 19.65 hm3 in the historic observed series (since 1989). The
the three studied catchments: (A) La Tejeria, (B) Cidacos, and (C) Arga.

http://cuencasagrarias.navarra.es/index.cfm
http://cuencasagrarias.navarra.es/index.cfm
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annual mean precipitation was 639 mm. The catchment is
equipped with 8 weather stations: 4 automatic stations (10 min
basis) and 4 manual (daily). Cidacos has higher rainfall rates on
the North-Eastern mountainous area (809 mm/year), which con-
trast with the low 453 mm/year measured in the South. Daily
mean temperature is higher than in adjacent Arga catchment
(12.6 �C), while relative humidity is lower (69%). Predominant soil
type is Typic Calcixerepts, but Typic Xerorthents are also found in the
North-Eastern mountainous area, and Typic Xerofluvents are
predominant on the river network paths (NRCS-USDA, 2014). Pre-
dominant textures are clay-loam on accumulation hillslopes and
silty-clay and loam on eroded hillslopes. Approximately half of
the catchment is used for cereal cultivation (47%, including some
minor irrigated areas), while the other half is divided into forest
(27%) and dispersed bushes (22%) land covers. Urban areas account
for the remaining 4%.

2.3. Arga catchment

Arga river is also one of the main tributaries of Ebro. Only its
upper part has been used on this study, specifically the 810 km2

defined by the gauging station at the municipality of Arazuri, being
the main river channel 53 km long. Elevation descends from
1400 m to 400 m at the outlet, with a mean slope of 24%. Flat
and gentle-slope areas (<10% slope) represent 29% of the catch-
ment, and steep slopes (>30%) are found on 37% of the area. These
slope values represent the steepest relief of the three studied sites.
In this study, a 69 km2 subcatchment feeding a reservoir (Eugi) in
the Northern boundary of the catchment has been subtracted and
both rainfall and streamflow measured at the reservoir’s outlet
were removed from the analysis, thus an effective catchment area
of 741 km2 was finally used. Historical streamflow records indicate
an average annual contribution of 423 hm3 at Arazuri station. Arga
catchment is heavily instrumented with 20 measuring stations, but
somehow limited in temporal resolution since most of them (12)
are manual stations working on daily basis. The catchment’s aver-
age annual rainfall measured for the 2000–2012 period was
956 mm. Average daily temperature and relative humidity were
11.7 �C and 76% respectively. In the southern half of the catchment
predominant soils belong to Aquic and Typic Xerorthent groups of
USDA’s Soil Taxonomy (NRCS-USDA, 2014), and present a silty-
clay-loam texture. Geologically this southern part is underlined
by clay marls and Pamplona gray marls. In the Northern area of
the catchment the prevailing soil classes are distributed according
to the landscape’s position. While steeper areas are mainly occu-
pied by Typic Xerorthents, the valley plain by Typic Haploxerepts.
Soils are fine and more than 1 m deep except for those in the
eroded hillslope that are shallow. The predominant land covers
in the catchment are forest (46%, mostly in the Northern part),
rainfed cereal crops (33%), bushes (12%) and urban areas (10%,
including the city of Pamplona).

3. Methodology

3.1. TOPLATS hydrological model

3.1.1. Model description
TOPLATS was developed as a water and energy balance model

to be used at local and catchment scales. For that, a simple soil–
vegetation–atmosphere transfer scheme (SVAT) was implemented
onto a TOPMODEL framework (Famiglietti and Wood, 1994). This
was afterwards improved by Peters-Lidard et al. (1997) to correct
deficiencies in the representation of energy fluxes (i.e. soil evapo-
ration and ground heat flux). Also, some additional modifications
were carried out by Pauwels and Wood (1999), who adapted it to
high latitude areas, and Crow et al. (2005) who tested an expansion
of the model to a soil water balance of four layers, and separated
soil and canopy contributions to evapotranspiration. The basic con-
cept underlying the model is that shallow groundwater gradients,
estimated from the local topography through a Topographic Index
(TI) (Sivapalan et al., 1987), set up spatial patterns of soil moisture.
Those patterns are considered key factors of simulation control on:
(1) storm events: influencing infiltration and runoff generation and
(2) inter-storm events: being responsible for evaporation and drai-
nage patterns. TOPLATS incorporates a soil vegetation atmosphere
transfer scheme (SVAT) to represent local scale vertical water
fluxes within the catchment scale TOPMODEL approach.

TOPLATS can be run in either a fully distributed mode or in a
statistical mode (Seuffert et al., 2002). In the fully distributed mode
the catchment is subdivided into a grid of regular size cells, where
each of those model units (cells) has its own specific: soil–vegeta-
tion parameterization, soil-topographic index value (TI) and mete-
orological input data (Pauwels et al., 2002). The land–atmosphere
scheme is then applied to each cell. The second mode (statistical)
has been used in this study. In the statistical mode, TI is repre-
sented through its statistical probability distribution given a fixed
bin-size (Fig. 2), thus reducing the computational demand. This
mode was developed under the similarity concept, that is, loca-
tions with the same TI and soil type, are assumed to respond sim-
ilarly (Pauwels et al., 2002), performing a semi-distributed
catchment representation.

In TOPLATS, the soil column is divided into two layers (Fig. 2): a
thin surface zone (SZ) and the deeper transmission zone (TZ). Fur-
thermore, the land surface is partitioned into bare and vegetated
areas. Separate water balances (Fig. 2) are formulated for the dif-
ferent water reservoirs: the surface zone, the transmission zone,
the water table and the canopy. Infiltration is calculated as the
minimum of the soil infiltration capacity (Milly, 1986) and net pre-
cipitation. The exchange of soil water between the upper and lower
layers is calculated assuming diffusive flux (Peters-Lidard et al.,
1997), where diffusivity is given as a function of Brooks and
Corey (1964) parameters. Evaporation is calculated with a soil
resistance formulation (Passerat De Silans et al., 1986) as the min-
imum of a soil controlled and an atmospherically controlled evap-
oration rate. Similarly, canopy transpiration is calculated as the
minimum of a plant and an atmospherically controlled transpira-
tion rate, where the canopy resistance to transpiration (Jarvis,
1976) is a function of a minimum: (1) stomatal resistance, (2)
LAI, and (3) stress factors (i.e. solar radiation, vapor pressure defi-
cit, air temperature and soil moisture) (Jacquemin and Noilhan,
1990). Plant growth is not directly simulated by TOPLATS, but
the seasonal development of plant properties is described by user
defined time-step updates of plant parameters, i.e., leaf area index,
plant height and stomatal resistance (Bormann, 2006a).

TOPLATS has been applied with different objectives, on a broad
range of time and space-scale conditions (Table 1). Some research-
ers used the model to analyze the effects of land use changes and
soil classification uncertainty at the catchment scale (Bormann
et al., 2007; Crow and Wood, 2002; Loaiza-Usuga and Poch,
2009; Loosvelt et al., 2015, 2014a; Viney et al., 2005). The spatial
resolution of input data, and its influence on different model out-
puts, such as water balances and flow components, were also
investigated (Wood et al., 1988; Endreny et al., 2000; Bormann,
2006a, 2006b). TOPLATS has also been used for discrete observa-
tions up-scaling (Crow et al., 2005), local weather prediction
(Seuffert et al., 2002) or crop growth analysis (Pauwels et al.,
2007). Different types of remotely sensed information have been
integrated with TOPLATS trough data assimilation (DA) procedures
for improving streamflow simulation (Pauwels et al., 2002, 2001),
soil moisture simulation (Crow et al., 2001; Houser et al., 1998;
Lucau-Danila et al., 2005) or latent heat fluxes estimation (Crow
and Wood, 2003).



Fig. 2. TOPLATS model schematic representation: lumped and distributed Topographic Index representation, and SVAT balances (water and energy) of vegetated soil (vg), wet
canopy (wc) and bare soils (bs). Water balance budgets: precipitation (P), net precipitation (Pn), evaporation (E), infiltration excess runoff (qie), saturation excess runoff (qs)
baseflow (qbf), infiltration (I), drainage (g) and capillary rise (w). Energy balance budgets: net radiation (Rn), latent heat flux (H) and soil heat flux (G).
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3.1.2. Previous sensitivity analysis and calibration studies
The model’s behavior and performance has also been explored,

for instance, to evaluate its sensitivity to soil parameters (Loosvelt
et al., 2014b, 2011) or to analyze different calibration strategies
(Goegebeur and Pauwels, 2007; Loaiza-Usuga and Pauwels, 2008;
Pauwels et al., 2009). Table 1 presents a compilation of the most
relevant works carried out with TOPLATS where parameter values
were investigated with different objectives and degrees of com-
plexity. On this study, parameters selected for TOPLATS sensitivity
analysis and calibration were chosen principally according to infor-
mation extracted from these works.

Calibration related researches (Table 1) were in some cases
focused on obtaining optimal streamflow values at catchment out-
let (Crow and Wood, 2002), while some others aimed to obtain
accurate soil moisture simulations (Goegebeur and Pauwels,
2007). Pauwels et al. (2009) pointed out that the three most impor-
tant soil parameters in the determination of the soil moisture con-
tent were the saturated hydraulic conductivity (Ks), the pore size
distribution index (B), and the Bubbling pressure (wc).

Bormann et al. (2007) proposed a calibration procedure based
on first, reproducing the long-term water balance tuning vegeta-
tion parameters (stomatal resistances) and secondly, on optimizing
the model efficiency by fitting the baseflow recession: adjusting
baseflow at complete saturation (Q0) and the Hydraulic conductiv-
ity decay (f) parameters. Seuffert et al. (2002) and Bormann
(2006b) also worked on the manual calibration of Q0, f and stom-
atal resistance (STr), while Goegebeur and Pauwels (2007) evalu-
ated PEST and Extended Kalman Filter methods performance in
Ks and B calibration. In Loosvelt et al. (2015) automatic calibration
was performed based on a weight-adaptive recursive parameter
estimation method, which is in concept a multi-start calibration
approach.

3.1.3. Model set-up
TOPLATS requires the following seven climate variables as

input: temperature (�C), relative humidity (%), atmospheric pres-
sure (mm), wind speed (m/s), rainfall rate (m/s), longwave down-
ward radiation (W/m2) and shortwave downward radiation (W/
m2). All of them, except for longwave radiation (LR), were obtained
from direct measurements at catchments’ meteo stations; whereas
LR was estimated from relative humidity (RH) and temperature (T)
(Prata, 1996). Each station data was assigned to its corresponding
percentage of catchment area, based on Thisessen polygons distri-
bution. TOPLATS statistical mode was run on both daily and hourly
time-scale. For hourly simulations, daily-measuring stations data
were hourly distributed according to nearby hourly measurements.
On the TOPLATS statistical mode, different land uses can be speci-
fied, but soil is considered homogenous. In La Tejeria catchment,
five land uses were considered (winter cereals, sunflower, fallow
land, riparian vegetation and urban areas). Land use input data
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for Cidacos and Arga included nine land use types in order to dif-
ferentiate irrigated from non-irrigated crops, and to distinguish
different forest types and their degree of soil coverage. For each
type, the parameterization required included: root depth, leaf
area index, albedo, emissivity, stomatal resistance, etc. Most of
those values were adapted from Crow and Wood (2002), Crow
et al. (2005), Houser et al. (1998), Pauwels and Wood (1999),
and Peters-Lidard et al. (1997). Specifically, LAI values for the dif-
ferent forest-types and crops, were obtained from Loaiza-Usuga
and Pauwels (2008), Loosvelt et al. (2014a), and Lucau-Danila
et al. (2005). Vegetation parameters were updated monthly, com-
pleting an annual cycle that applied for the whole simulation per-
iod (12 years). In La Tejeria, soil parameter information was
obtained from available field observations (Casalí et al., 2008).
Arga and Cidacos soil parameters were determined based on the
soil texture class following (Rawls et al., 1982). A runoff-routing
routine based on the unit hydrograph method proposed by the
SCS – Soil Conservation Service (1972) was written in FORTRAN
and added to TOPLATS.

3.2. Sensitivity analysis

A general description of SA methods is given in the introduc-
tion of this article, thus, this section extends only two relevant
aspects: Design of Experiment sampling techniques (DoE), and
the specific SA methods used in this study: Morris (1991) and
Sobol (1993). Both Morris Method (MM) and Sobol Method
(SM) follow approaches based on DoE techniques, which have a
large influence on SA efficiency (Song et al., 2015).

Some SA methods require specific DoE sampling techniques
designed ad hoc. This is the case of MOAT sampling for MM
(Morris, 1991) and the sampling technique proposed by Saltelli
(2002) (denoted as SOBOL) for SM (Gan et al., 2014). These sam-
pling techniques are both based on simple random sampling, but
different conditions need to be satisfied for their sample sizes
(Song et al., 2015). A detailed description on both sampling
methodologies can be found in Gan et al. (2014). Substantial dif-
ferences in the number of required model runs (NR) are found
between both MOAT and SOBOL sampling methods. In the first
case (Morris, 1991):

NR ¼ ðkþ 1Þ � n ð1Þ
where k is the number of parameters whose sensitivity is evalu-
ated and n is the number of samples.

On the other hand, Saltelli (2002) proposed two efficient
approaches to reduce the computational cost of SM. The one
applied on this study requires a larger number of model runs,
but provides more consistent results:

NR ¼ ½ð2 � kÞ þ 2� � n ð2Þ
3.2.1. Morris method
The screening-type Morris Method (Morris, 1991) takes

advantage of elementary effects (EE) computed at evenly spaced
values of each parameter over its entire range. The final effect is
then calculated as the average of a set of partial effects. Therefore,
it provides a global sensitivity measure with lower computational
cost compared to most global methods. In this way, local sensitiv-
ities are integrated to a global sensitivity measure and the pres-
ence or absence of nonlinearities or correlation interactions
with other parameters can also be identified (Van Griensven
et al., 2006). Screening methods, such as MM, aim to identify
the subset of non-influent factors in a model using a small num-
ber of model runs (Campolongo et al., 2011).

MM has a low computational cost, is simple to implement and
its results are easy to interpret (Saltelli et al., 2000) but individual
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interaction between parameters cannot be detected, since MM
only calculates the overall interaction of a parameter with the rest
(Saltelli et al., 2000). It measures qualitatively relative sensitivity
by ranking input parameters in order of sensitivity but cannot
quantify in absolute terms how much one parameter is more
important than another (Campolongo and Saltelli, 1997).

Considering that y(X) is the objective function (goodness-of-fit
of the model or model output of interest) and X = (X1, . . .,Xk) is
the parameter set:

yðXÞ ¼ f ðX1; . . . ;XkÞ ð3Þ
in MM, y(X) is calculated for each parameter set, where parameter
values (X) are changed OAT. The difference resulting of both y(X)
values is divided by the variation of perturbed parameter values
(D) to obtain the elementary effect of each parameter di(X). Elemen-
tary effects are calculated as follows:

diðXÞ ¼ ½yðX1;X2; . . . ;Xi�1;Xi þ D;Xiþ1; . . . ;XkÞ � yðXÞ�
D

ð4Þ

This calculation process is repeated until the defined number of
samples (n) are completed for each parameter. Finally, the mean
(l) and standard deviation (r) values of di for the n samples are
used as sensitivity indices, where l and r indicate the influence
of each parameter on the objective function (Shin et al., 2013). A
high l value indicating an important overall influence of the
parameters and a high value of r (hereafter referred to as Morris
interaction) meaning strong interactions with other parameters
or the effect of nonlinearities (Shin et al., 2013). Instead of using
l, this study uses the mean of the absolute values of the n samples
of di, denoted as l⁄ (hereafter referred to as Morris sensitivity) to
overcome the problem of the effects of opposite signs due to a
models’ non-monotonic characteristics (Campolongo et al., 2011).
Further description of Morris method and its implementation for
specific purposes can be found in Francos et al. (2003), van
Griensven et al. (2006), Shin et al. (2013), and Wainwright et al.
(2014).

3.2.2. Sobol method
SM is a variance decomposition global SA method where all

parameters are varied simultaneously. One of its main advantages
is that it is a model-free method, i.e. it can compute sensitivity
indices regardless of the linearity, monotonicity (or other generic
assumptions) on the underlying model (Baroni and Tarantola,
2014). In SM the variance of the model output is decomposed into
fractions that result from either individual parameters or parame-
ter interactions. The sensitivity of each parameter or parameter
interaction is then assessed based on its contribution (measured
as a percentage) to the total variance computed using a distribu-
tion of model responses (Zhang et al., 2013). Sobol sensitivity
indices have been shown to be more effective than other
approaches in capturing the interactions between a large number
of variables for highly nonlinear models (Tang et al., 2007).

As in Eq. (3), considering that y(X) is the objective function
(goodness-of-fit of the model or model output of interest) and
Table 2
TOPLATS parameters included on Morris and Sobol sensitivity analysis. Type, symbol, unit

Type Parameter

1 Soil properties Brooks–Corey Pore Size distribution Index
2 Soil properties Bubbling pressure
3 Soil properties Saturated soil moisture
4 Soil properties Surface saturated hydraulic conductivity
5 Soil properties First soil resistance parameter
6 TOPMODEL Subsurface flow at complete saturation
7 TOPMODEL Hydraulic conductivity decay
X = (X1, . . .,Xk) is the parameter set, the total variance of function
y(X), D(y), is decomposed into component variances from individ-
ual parameters (Di) and their interactions (Dij,Dijk, . . .):

DðyÞ ¼
X

i

Di þ
X

i<l

Dij þ
X

i<j<l

Dijl þ � � � þ D12...k ð5Þ

where Di represents the average reduction in variance achieved if
the parameter iwas known (Ratto et al., 2001) and Dij is the amount
of variance due to the interaction between parameter Xi and Xj. The
single parameter sensitivity (First-Order Sobol index), Si, and
parameter interaction (Second-Order index), Sij, are then assessed
based on their relative contribution to the total variance (D):

Si ¼ Di

D
ð6Þ

Sij ¼ Dij

D
ð7Þ

Also, a third index (Total-Order index), STi, that measures the main
effect of Xi and its interactions with all the other parameters (Zhang
et al., 2013) can be calculated as:

STi ¼ 1� D�i

D
ð8Þ

where D�i is the bottom marginal variance, that accounts for the
amount of variance due to all of the parameters except for Xi

(Massmann and Holzmann, 2012). Hereafter in this article, Si is
referred to as Sobol sensitivity and STi as Sobol interaction. SM main
characteristic is the use of two different sets of samples, generated
by the same scheme and with the same number of elements. SM
uses the first set to calculate the overall output mean and variance
(i.e., the combined effects of all parameters) while the second sam-
ple is then used to resample each parameter, rather than setting
each to a fixed value, for the calculation of total and individual vari-
ance contributions (van Werkhoven et al., 2008). Di and D�i can be
calculated as described in Massmann and Holzmann (2012) and
Zhang et al. (2013). In the last years SM has been used frequently
in different types of hydrological models (Gan et al., 2014;
Massmann and Holzmann, 2012; Shin et al., 2013; van
Werkhoven et al., 2008; Wainwright et al., 2014).

3.2.3. SA implementation
The sensitivity analysis was carried out using SimLab software

(EC-JRC, 2008). The SA analysis included three steps: (1) sample
generation (DoE), (2) model execution and (3) model’s results anal-
ysis (referred to as Statistical post processor in SimLab). Seven
parameters (i.e. k = 7) (Table 2) were selected for the SA based on
previous studies (Table 1) and manual testing. MM required 80
runs, since n = 10 samples were considered. In contrast, SM
required 4096 runs since n = 256 samples were used. As this study
aimed to evaluate TOPLATS in all its complexity, model sensitivity
was evaluated in terms of nine variables and efficiency measures,
grouped in: (1) main hydrological processes (surface runoff, base-
flow and evapotranspiration), (2) soil moisture behavior (mean and
s and parameter value ranges are given.

Symbol Units Min limit Max limit

B – 0.1 1.0
wc m 0.1 1.0
hs cm3/cm3 0.4 0.6
Ks m/s1 1e�07 1e�03

rmin s/m1 4000 80,000
Q0 mm/day1 5 175
f m�1 1 14
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standard deviation of surface zone) and (3) goodness-of-fit (effi-
ciency) measures (detailed in Section 3.3).

3.3. Calibration–Validation procedure

3.3.1. Optimization algorithm
In this work, a Multi-Start approach of the Powell Method

(MSPM) was used to calibrate the model. Powell Method (PM)
(Powell, 1964) belongs to the category of local and derivative-
free algorithms. PM is a conjugate directions method, which are
capable of minimizing quadratic functions in a finite number of
steps. Since a general nonlinear function can be approximated rea-
sonably well by a quadratic function near its minimum, this type of
conjugate directions method is expected to speed up the conver-
gence of even general nonlinear objective functions (Rao, 2009).
PM can find a global optimum when specifically tuned to a certain
objective function, but in cases of sophisticated algorithm opti-
mization (such as complex hydrological models), the selection of
appropriate parameter starting points may affect algorithm perfor-
mance substantially. Inadequate selection of initial parameter val-
ues may lead to convergence to inferior local optima or even to
numerical dispersion (Paik et al., 2005). All in all, PM has been fre-
quently applied on different hydrological calibration procedures
and models (Chen et al., 2005; Geem and Roper, 2010; Yang
et al., 2011; Zhang and Lindström, 1997).

In our study, to avoid the algorithm ending at local minima con-
straint, within each parameter’s search range different values were
selected as initialization values for the search. Dispersed values
covering the full feasible parameter range were selected. The algo-
rithm was free-available and programmed in FORTRAN (Press
et al., 1988), the same programming language that was used to
develop TOPLATS which facilitated the integration of both tools.

3.3.2. Goodness-of-fit
In this study, four measures of agreement were used for SA, cal-

ibration and validation. The first was the relative volumetric error
(Pbias), which represents the percent volume difference between
simulated and observed streamflow fluxes. As such, negative biases
correspond to model under-estimation and positive biases to over-
estimation (Khakbaz et al., 2012). It is calculated as follows:

Pbiasð%Þ ¼ 1�
Pn

i¼1ðQsimðiÞ � QobsðiÞÞPn
i¼1QobsðiÞ

� 100 ð9Þ

The second measure of agreement used was the Nash & Sutcliffe
Efficiency (NSE) (Nash and Sutcliffe, 1970), which measures the
fraction of the observed streamflow variance explained by the
model, calculated as the relative magnitude of the residual vari-
ance (noise) to the observed variance (information). Its optimal
value is 1.0 and values should be larger than 0.0 to indicate a ‘‘min-
imally acceptable” performance (Yapo et al., 1996). NSE is calcu-
lated as follows, with exponent value k = 2.

NSE ¼ 1�
Pn

i¼1ðQobsðiÞ � QsimðiÞÞk
Pn

i¼1ðQobsðiÞ � QobsÞ
k

ð10Þ

The last two measures used (NSE1 and NSE0.5) are simple modifica-
tions of the original NSE equation, designed for the analysis of
specific streamflow ranges. In NSE1, k = 1 and in NSE0.5, k = 0.5. In
NSE, peak flows simulation accuracy is prioritized, whereas NSE1
focuses on average flows and NSE0.5 on low flows.

3.3.3. CAL/VAL implementation
Previously, different studies discussed the advantages of differ-

ent random period selection techniques (RND) for model calibra-
tion and validation (Brath et al., 2004; Kim and Kaluarachchi,
2009; Senarath et al., 2000). Some of them evaluated data length
requirements when RND approach is applied, compared to the con-
ventional (CON) approach, i.e. Kim and Kaluarachchi (2009) con-
cluded that randomly sampled data required a shorter calibration
length (36 months) than continuous data (120 months) to reach
good model performance. Similarly, Perrin et al. (2007) tested the
random approach with two daily rainfall-runoff models showing
that, in general, even just 350 calibration days sampled out of a
longer data set including dry and wet conditions could be sufficient
to obtain robust estimates of model parameters. On the conven-
tional calibration approach, Yapo et al. (1996) estimated a mini-
mum of 96 months for adequate model calibration and also
noted that parameter uncertainty was reduced when wettest data
records were used.

This study, following referenced studies recommendations on
CON and RND period selection, considered a 12 years period, and
included two calibration and validation (CAL/VAL) period selection
strategies in order to evaluate the influence of climatic particular-
ities on the CAL/VAL results. First, a ‘‘conventional” strategy (CON)
was followed, where the first hydrological year was used for
warming-up (2000–2001), the next six years for calibration
(2001–2007), and the remaining five years for validation (2007–
2012). Secondly, a ‘‘random” strategy (RND) was proposed and
evaluated. On this second approach, each month’s data was ran-
domly assigned to either CAL or VAL period according to two con-
ditions: (1) the mean streamflow of CAL and VAL series could not
differ more than 10% and, (2) their standard deviations could not
differ more than 15%. This second strategy was adopted to circum-
vent the imbalance between CAL and VAL periods resulting from
irregular climatic conditions typical of Mediterranean areas. In
total, 72 months were randomly assigned to CAL and 60 months
to VAL, maintaining the same proportion as in the conventional
strategy.

A four steps calibration (Fig. 3) was then performed exactly in
the same way for both approaches (CON and RND): (1) manual cal-
ibration of the global water balance by adjusting Leaf Area Index
(LAI) and Initial water table depth (WTi), and (2) MSPM of six
parameters (Table 2) on 8 different start points. On the latter, the
algorithm was setup to maximize NSE1. Optimization of NSE1
was assumed to improve model efficiency while maintaining water
balance on optimal performance. In a final step, out of the 8 sets of
optimal parameter (OP) values obtained, the one offering best
results (lower Pbias and higher NSE) was taken and used as a
new initial set. Then, a new pair of refinement optimizations (steps
3 and 4) were carried out: run number 9 was set up again with
NSE1 as objective function (with the objective of finding possible
better results with parameter values close to selected OP) and
run number 10 using NSE as objective to prioritize high flows sim-
ulation improvement.
4. Results and discussion

4.1. Sensitivity analysis

Plots presented in this section (Figs. 4–6) show results fromMM
(left) and SM (right) analysis of daily TOPLATS simulations. Output
variables are shown in the y-axis for the three catchments and
TOPLATS parameters in the x-axis. Circle size represents individual
parameter sensitivity (l⁄ in MM and Si in SM) while blue color
ranges identifies total-order sensitivity results (r in MM and STi
in SM), which includes parameter interaction.
4.1.1. Hydrological processes
SA results indicated that f had the overall largest influence on

hydrological processes sensitivity. It was the main parameter



Fig. 3. Four step calibration procedure scheme.

Fig. 4. Sensitivity analysis results of main hydrological processes (surface runoff, baseflow and evapotranspiration) using Morris (left) and Sobol (right) methods. Parameter
sensitivity (l⁄ and Si) and interaction (r and STi) are shown. MM results expressed in mm/day and SM results expressed as a decimal of the total variance.
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responsible in La Tejeria processes, and shared responsibility with
B in Cidacos and wc in Arga.

Both methods, MM and SM identified parameter f as the one
having the largest influence on surface runoff (SR in Fig. 4) gener-
ation in La Tejeria. Parameter f was also the most influential in
Cidacos, where the second most sensitive was wc. MM and SM also
agreed in Arga, identifying f and wc as the most influential param-
eters, but here also Q0 seemed to have some relevance too



Fig. 5. Sensitivity analysis results of Surface Zone (SZ, 5 cm) soil moisture processes (mean value hm, and standard deviation, hSD) using Morris (left) and Sobol (right)
methods. Parameter sensitivity (l⁄ and Si) and interaction (r and STi) are shown. MM results expressed in mm3 mm�3 and SM results expressed as a decimal of the total
variance.

Fig. 6. Sensitivity analysis results of model efficiency (NSE1, NSE, NSE0.5 and Pbias) using Morris (left) and Sobol (right) methods. Parameter sensitivity (l⁄ and Si) and
interaction (r and STi) are shown. MM results expressed in NSE coefficient value and SM results expressed as a decimal of the total variance.
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according to MM. Some differences were found among catchments
in terms of baseflow (BF in Fig. 4) sensitivity, as different parame-
ters appeared as the most influential: f in La Tejeria, B in Cidacos
and wc in Arga. Strictly speaking wc shared its relevance with B
on Arga according to SM. All in all, these 3 parameters were the
most significant in all catchments. Results obtained by SM depicted
stronger differences between parameters in terms of baseflow sen-
sitivity, whereas MM did not show significant differences among
most parameters. Evapotranspiration (ET in Fig. 4) outputs were
clearly sensitive to f in La Tejeria and Arga, while in Cidacos up
to four parameters shared a similar influence degree: B, wc, f and
Ks. In terms of parameter interaction for the three processes, wc

and f had larger interaction levels. This was particularly notorious
for wc in Arga, according to MM, and for f in all catchments accord-
ing to SM.

When comparing the results obtained with MM and SM, in most
cases both methods came up with the same set of most influential
parameters, but some results showed different patterns. WhenMM
gave four (out of 7) parameters a similar degree of sensitivity in
many cases, SM was able to identify more clearly the most influen-
tial pair of parameters. This discrepancy on secondary level param-
eters identification was clearly observed when comparing
parameters B and wc with parameters hs and Ks. Despite having
similar individual sensitivities in MM, there were relevant differ-
ences among them on SM. Thus, SM was able to differentiate more
clearly secondary parameters, especially in BF and ET sensitivity
analysis.

4.1.2. Soil Moisture
Soil moisture sensitivity analysis results did not show relevant

differences between MM and SM despite their different computa-
tional requirements (Fig. 5). Both were capable of clearly identify-
ing B as the main parameter affecting surface zone soil moisture
mean value (hm) outputs. Regardless of some minor disparities on
secondary parameters estimation, both agreed on the estimation
of hs and Ks as the second and third parameter in terms of individ-
ual sensitivity. Despite differences in catchment size, hm sensitivity
patterns for the three studied catchments were found to be very
similar. Pauwels et al. (2009) concluded that Ks, B and wc were
the three most important soil parameters on the determination
of soil moisture content. These results are similar to the ones
obtained here, but differed on the role attributed to wc and hs. On
a SA following a completely different approach, Loosvelt et al.
(2014b) found that TOPLATS soil moisture output was mostly
influenced by the residual soil moisture content (hr), hs, wc, B and
Ks. In their study, Loosvelt et al. (2014b) were able to identify areas
within the parameter range with different level of sensitivity,
related to the shape of the soil moisture retention curve. They
found the highest sensitivity for low values of B, wc, hs, and for high
hr values.
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Regarding soil moisture dynamics (i.e. surface zone soil mois-
ture standard deviation (hSD), Fig. 5) f was identified as the most
influential, followed by Ks and hs. These results were clearer with
SM, which seemed to take advantage of its more detailed setup,
so primary, secondary and tertiary parameters could be more
plainly distinguished from non-influential ones. No significant dif-
ferences were found among catchments in terms of hSD sensitivity.
As shown in Fig. 5, B and Ks presented the highest level of interac-
tion with other parameters on model hm output, and f in soil mois-
ture dynamics.

4.1.3. Model efficiency
In this section, sensitivity results of four efficiency measures are

described. These results offered notable differences between catch-
ments, where diverse climate regimes seemed to affect remarkably
efficiency results (Fig. 6). Furthermore, differences between MM
and SM were larger than in the previous analyses.

As a general inference of the SA of efficiency measurements, it
can be stated that 3 parameters appeared to be responsible for
the largest fraction of model sensitivity to medium, high and low
flow simulation (Fig. 6): Brooks–Corey Pore Size distribution Index
(B), Bubbling pressure (wc) and Hydraulic conductivity decay (f). An
important remark extracted from this analysis was the similarity of
the wettest catchments (i.e. Arga and La Tejeria), where wc was
globally more influential than in Cidacos, where B gained impor-
tance. Few discrepancies were found among methods, but for
instance when wc was the second most influential parameter in
NSE in Cidacos according to MM, that place was taken by B accord-
ing to SM.

NSE1, (i.e. efficiency for average flows) was mainly controlled by
wc and f in La Tejeria and Arga (Fig. 6). In Cidacos, in addition to
those two parameters, MM and SM identified B as an important
parameter as well. As in previous analyses, SM detected more
clearly non-influential parameters (e.g. hs or rmin). Regarding effi-
ciency of high flows simulation (i.e. NSE, Fig. 6) results could be
summarized as follows: f being the key factor affecting NSE in La
Tejeria, whereas B, wc and f shared similar individual effects in
Cidacos and wc and f accounted for most of the sensitivity in Arga.
Sensitivity to low flow simulation (i.e. NSE0.5, Fig. 6) was mostly
similar to NSE1. Lastly, Pbias was primarily affected by f in La Teje-
ria and by B and f in Cidacos and Arga.

Regarding parameter interaction of the four efficiency mea-
sures, f was the parameter that showed larger interaction with
the rest. In general, it could be observed (Fig. 6) that B, wc, and f
shared the highest levels of interaction. In La Tejeria and Arga
those interactions affected mainly wc and f. On the other hand,
those interactions were found to be especially intense between B
and f in Cidacos.

4.1.4. SA global remarks
Previous studies commented on weakness and advantages of

MM and SM for hydrological models analysis (Shin et al., 2013).
According to Campolongo and Saltelli (1997) there could be a dis-
crepancy between the identification of parameters with both algo-
rithms. However, in this study both methods generally agreed, and
identified the same set of most influential parameters on surface
runoff (f andwc), baseflow (f, B andwc) and evapotranspiration pro-
cesses (f and four other secondary parameters, B, wc, hs, Ks). They
also showed agreement on finding the most sensitive parameter
responsible of mean (B) and soil moisture variation values (f).
However, some qualitative differences were found on the SA of
efficiency.

Parameters identified here as the most influential have a clear
physical meaning, but some of them, particularly soil parameters,
participate on the calculations of several water fluxes, which com-
plicates the understanding of their precise influence on each model
output. In any case, parameters Q0 and f are, together with the
varying WTD, the controlling factors of the generated baseflow
amount. As observed from the specific formulation detailed in
Famiglietti and Wood (1994), while Q0 is responsible of the magni-
tude of the generated baseflow, parameter f defines the shape of
the evacuation flow, leading to faster (low f values) or slower
(higher f) evacuation of subsurface flow from saturated areas in
the catchment. Parameter f controls this way the availability of
water in the soil for other processes, such as evapotranspiration,
being thus the main responsible of water balance patterns in the
catchments (including hSD).

As mentioned above, the interaction of parameters gets more
complex when soil parameters are evaluated. In TOPLATS, the soil
is modeled through the equations of Brooks and Corey (1964), that
numerically calculate the soil moisture content hm depending on B,
wc, hr, hs and the matric head (w) (Famiglietti and Wood, 1994;
Loosvelt et al., 2014b). As it was observed from the SA results, B
was the most influential parameter on hm. This parameter is the
exponent value regulating the hm equation in TOPLATS. Higher B
values will thus lead to higher mean soil moisture conditions. Also,
larger hs and wc values will increase soil moisture mean content.

Parameter wc plays an important role on the partitioning
between infiltration and runoff generation. This parameter’s value
defines a discontinuity in TOPLATS when the matric head value (w)
reaches wc. When this point is reached (usually during the wettest
winter days), saturation excess runoff is activated and soil mois-
ture and conductivity values are modified accordingly. In any case
parameter interactions in TOPLATS are complex, as diffusive flux
from SZ to RZ is also controlled by Ks, hs, hr, and B (Peters-Lidard
et al., 1997) and the same parameters take part on the drainage
calculations as well (Famiglietti and Wood, 1994).

Globally, differences among methods can be numerically sum-
marized as follows: (1) in most of the cases evaluated in this study
(81%) MM and SM identified the same parameter as the most influ-
ential, being this agreement particularly strong on soil moisture
SA, but also on other main hydrological processes and on efficiency
and Pbias; (2) in 67% of the cases tested both methods agreed at
identifying the same pair of most influential parameters; and (3)
in the identification of the three most influential parameters the
agreement of both SA techniques was higher on soil moisture
(83%), and hydrological processes (78%), but lower on efficiencies
and Pbias (50%). This results are in agreement with Wainwright
et al. (2014), who presented another comparison of MM and SM
and concluded that both methods provided consistent parameter
importance rankings when used on a reservoir-aquitard-aquifer
model. However, as also investigated by Gan et al. (2014), clearer
qualitative differences between secondary parameters were pro-
vided by SM.

4.2. Model Optimization

4.2.1. MSPM performance
TOPLATS calibration dimensionality was reduced to just 6

parameters thanks to SA analysis that identified parameter rmin

as uninfluential to most efficiency and hydrological model outputs,
so it was not included on the MSPM calibration. In order to allow
for comparison of optimization algorithm performance on the dif-
ferent catchments, Table 3 shows NSE1, NSE and Pbias median val-
ues (of the 10 optimization runs) at initial (IP) and final optimal
points (OP). These results clearly identified Cidacos as the catch-
ment where MSPM improved TOPLATS performance the most. IP
efficiency values were very low in Cidacos, indicating that param-
eter combinations far from the optimal values had a stronger influ-
ence on efficiency results than in the other two catchments. In La
Tejeria and Arga, most IP value sets, even the farthest from the final
OP values, offered positive NSE values. For Cidacos, extremely large



Table 3
Improvement of efficiencies and Pbias reduction achieved by MSPM on La Tejeria,
Cidacos and Arga catchments. Values presented on the table are median values of the
10 (8 MSPM and 2 refinement) optimization runs obtained with the Initial Parameter
(IP) values and Optimal Parameter (OP) values.

Catchment NSE1 NSE Pbias (%)

IP OP IP OP IP OP

1. La Tejeria 0.40 0.68 0.27 0.82 15 3
2. Cidacos �0.41 0.50 �1.51 0.57 112 4
3. Arga 0.37 0.49 0.38 0.57 5 3
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Pbias (112%) values were obtained at IP points. This value dropped
to 4% after optimization, showing that using NSE1 as the optimiza-
tion criteria also resulted in a well-balanced volume simulation.
These strong Pbias reductions in Cidacos contrasted with the more
modest Pbias improvements in the other two catchments (12% and
2% in La Tejeria and Arga, respectively) where IP Pbias values were
already moderate or even low. Optimization results showed that
TOPLATS offered a more stable behavior on wetter catchments
(i.e. Arga), where even before calibration, results were not far from
optimal ranges. On the other hand, efficiency results before opti-
mization (IP) showed large variability in La Tejeria, and extremely
large in Cidacos (not shown). Better results on wetter catchments
were, somehow, expected due to discontinuities that may appear
between saturated areas and part of their upstream grid cells. Thus,
those cells do not contribute to subsurface flow during the drier
seasons, especially on Cidacos catchment.

4.2.2. Optimal parameter values
Optimal (OP) and Best performing parameter values (BP) found

by MSPM shown in Fig. 7. For simplification and to allow catch-
ment behavior comparison, only CON approach values are shown
in this section. Parameter value ranges to be explored by the algo-
rithm were defined according to references in previous TOPLATS
works (Goegebeur and Pauwels, 2007; Loaiza-Usuga and
Pauwels, 2008; Peters-Lidard et al., 1997).

First parameter evaluated was B, whose BP values for La Tejeria
and Arga were found at values close to one, while in Cidacos it was
substantially lower (0.41). Regarding wc, despite MSPM ended on
some local minima in some of the optimization runs, in all cases
the BP wc value was within the 0.1–0.4 m range. In general, in
the three catchments, highest efficiencies were found as a combi-
nation of high B and low wc values (despite some optimizations
ending at the opposite combination, low B and high wc). Saturated
soil moisture (hs) yielded different best performing values in La
Tejeria, with a low optimal hs, and Cidacos and Arga, where optimal
hs was over 0.55 m3/m3.

Ks, had its BP within 1e�4 and 1e�5 m/s for La Tejeria and Arga,
but in Cidacos these values were higher (between 1e�3 and 1e�4 m/
s) (Fig. 7). Differently from some other parameters (i.e. wc or f),
optimal Ks values were always located on a small range of the
defined parameter search space. Subsurface flow at complete satu-
ration (Q0) optimal values increased as catchment area increased.
Similarly to Ks, optimal Q0 values (OP) were clearly identified on
specific areas (value range). Finally, for the decay parameter (f),
which is key for event recession flow adjustment, OP and BP values
are presented. Parameter f has a strong parameter interaction that
resulted in similar efficiency results with varied f values, but BP
values were close to 8.0 in La Tejeria and Arga. In Cidacos lower f
values were found, which is related to a more rapid decrease of
baseflow in this catchment.

BP values obtained in this study are in accordance with param-
eter values reported in other studies, but significant differences
were found on Ks values. Other TOPLATS studies, where parameter
values were detailed include Loaiza-Usuga and Pauwels (2008),
who fixed some parameter within the following ranges: f (0.01–
1.2 m�1) and Q0 (2.4–61 mm/day), and calibrated three parame-
ters: Ks, obtaining an optimal mean of 3.8e�6 m/s; B, with a mean
calibrated value of 0.72; and wc, with a set of optimal values with
0.7 m as mean. used, after calibration, f = 2.5 m�1, and Q0 -
= 6.0 mm/day on a 91 km2 catchment. Ranges of calibrated param-
eter values reported in Pauwels et al. (2009) for different soil types
were: B (0.47–0.65), wc (0.35–0.45 m) and Ks (2.8e�6–3.5e�6 m/s).
Parameter values presented in Loosvelt et al. (2011), for different
soil types were in the following ranges: B (0.15–0.69), wc (0.2–
0.94 m) and Ks (5.8e�7–1.1e�5 m/s). As it has been extracted from
our SA study, large parameter interaction allows obtaining similar
optimal efficiencies with substantially different parameter values
combination in TOPLATS.
4.3. Comparison of conventional (CON) and random (RND) calibration
approach on CAL/VAL results

TOPLATS daily efficiencies and Pbias results after CAL and VAL
for both CON and RND strategies are presented in Table 4. Simula-
tions of La Tejeria offered similar NSE results when CON and RND
strategies were applied, although best efficiency in calibration was
obtained with CON (0.82). Similarly, validation NSE results were
over 0.7 in this catchment for both strategies and Pbias results
were low, below 5% in all cases. Results for Arga were similar, with
little differences between CON and RND strategies. In Arga, the
conventional approach provided more stable NSE results in CAL
(0.63) and VAL (0.60), whereas variation was larger in RND
approach (0.71/0.54). Total simulated volumes were close to the
observed, with Pbias lower than 5% on calibration and 10% on
validation.

In Cidacos, due to the irregularity of its rainfall, extreme events
seemed to have a large influence on the NSE. CON calibration
achieved a NSE1 of 0.53 and a corresponding NSE of 0.61 with a
low Pbias (2%). But, in this case, validation results were poor, due
to an abnormal decrease in simulated water table depth (WTD)
that caused a strong streamflow underestimation (77%). The vali-
dation period was notably drier than the calibration one, and this
affected the results critically. The RND approach overcame this
issue and improved results substantially in Cidacos reaching a
NSE1 of 0.54 and a NSE of 0.91 for the calibration period. Validation
yielded then (RND) efficiency values of 0.39 and 0.25 (for NSE1 and
NSE, respectively) and a remarkable reduction in Pbias from 77% to
3%. BP parameter values identified by this second approach helped
TOPLATS to perform in a more consistent way. The deficiency of
this method was that it was not able to properly simulate extreme
flows during validation, but this was principally caused by just 3
single events (Fig. 11), where TOPLATS underestimated streamflow
notably.

TOPLATS streamflow simulation efficiency values obtained here
are similar to those reported by Bormann et al. (2007), on a
693 km2 wet catchment, with a daily NSE results of 0.66 and
0.61 for CAL and VAL respectively. Two parameters were manually
calibrated on that study, reaching a simulation Pbias below 3%.
Bormann et al. (2007) also noted the influence that hydroclimatic
conditions had on model’s CAL/VAL results. This author signaled
that large differences on evapotranspiration, precipitation and dis-
charge among CAL/VAL periods limited the possibility to achieve
proper CAL/VAL results. The RND strategy applied here guarantees
that enough wet weather data is included on the calibration period,
leading to better model performance. This conclusion was also
noted by Anctil et al. (2004). Also in accordance with our results
in mediterranean catchments, Kim and Kaluarachchi (2009) found
that the number of high-flow months included on the calibration
data had a great influence on model efficiency.



Fig. 7. TOPLATS Optimal (OP) and Best Performing (BP) parameter values obtained through MSPM model calibration of daily streamflow simulation with the conventional
(CON) approach. Red lines indicate optimization parameter search range. Results for La Tejeria (TEJ), Cidacos (CID) and Arga (ARG) catchments. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Daily streamflow simulation efficiencies (NSE1 and NSE) and bias results achieved
after optimization.

Catchment Calibration type NSE1 NSE Pbias

CAL VAL CAL VAL CAL VAL
– – – – % %

1. La Tejeria CON 0.71 0.65 0.82 0.72 2 2
RND 0.64 0.69 0.77 0.73 �5 �4

2. Cidacos CON 0.53 0.35 0.61 0.09 2 �77
RND 0.54 0.39 0.91 0.25 8 �3

3. Arga CON 0.50 0.49 0.63 0.60 �3 �9
RND 0.53 0.46 0.71 0.54 2 �5
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One of the points of interests of this study was to evaluate the
performance of the model on different climate conditions. Difficul-
ties faced in Cidacos calibration and validation also relate with
Perrin et al. (2007) and Li et al. (2010), who concluded that stable
parameter values proved more difficult to reach in dry catchments
(in Cidacos unstable parameter values were obtained on CON cal-
ibration). Also Li et al. (2010) used random selection of CAL/VAL
periods of different lengths, and concluded that humid catchments
required shorter CAL/VAL periods than dry ones to obtain stable
parameter values, coinciding with our results in Mediterranean
catchments.
4.4. Analysis of model outputs

4.4.1. Water on the soil profile
Fig. 8 presents daily simulated soil moisture (h) behavior in

relation with recorded rainfall. Following the best results detailed
in previous 4.3 section, for La Tejeria and Arga the results shown in
Figs. 8 and 9 are those obtained with CON calibration approach,
while Cidacos’s ones correspond to RND strategy. The plot repre-
sents the whole period studied (i.e. including CAL/VAL and



Fig. 8. Simulated soil moisture content (h) (cm3/cm3) in the Surface Zone (SZ) and in the Transmission Zone (TZ) for (a) La Tejeria, (b) Cidacos and (c) Arga catchments.
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warming-up periods). It can be observed that within each catch-
ment, the deeper TZ kept higher soil moisture contents than the
SZ for most part of the year. This difference was higher during win-
ter periods and lower during summer when h dropped in both
layers.

Simulated mean soil moisture (hm) values in the SZ were
0.13 cm3 cm�3 in La Tejeria, 0.13 cm3 cm�3 in Cidacos and
0.24 cm3 cm�3 in Arga. La Tejeria presented the smallest mean
value difference between layers (5%), whereas that difference
reached 9% in Cidacos and Arga. For the TZ hm values were
0.18 cm3 cm�3 in La Tejeria, 0.22 cm3 cm�3 in Cidacos and
0.33 cm3 cm�3 in Arga. During summer periods, larger differences
among layers were found in Cidacos. Differences between Arga
(with the highest soil moisture mean values in both layers) and
the other two catchments were especially remarkable on the SZ.
In our study, obtained soil moisture values were, globally, low in
comparison with other studies (Goegebeur and Pauwels, 2007;
Loosvelt et al., 2011). Soil moisture fluctuation (hSD) was in all
the catchments larger in TZ than in SZ. In both layers, largest fluc-
tuations were found in Arga catchment. hSD values in La Tejeria
were 0.03 cm3 cm�3 (SZ) and 0.06 cm3 cm�3 (TZ); in Cidacos
0.03 cm3 cm�3 and 0.04 cm3 cm�3; and in Arga 0.06 cm3 cm�3

and 0.07 cm3 cm�3.
Regarding the proportion of saturated catchment area (Fig. 9), it

can be observed that intense and persistent rainfall events resulted
in similar maximum percentages of saturated catchment in La
Tejeria (43.9%), Cidacos (37.3%) and Arga (37.4%). However, mean
and percentile analysis of saturation degrees showed large varia-
tion among catchments (not shown). In Arga, up to 24% of the sim-
ulation days presented more than 10% of its area as fully saturated.
In La Tejeria, that saturation level (10%) was reached only during
6% of the days and in Cidacos in 3%. Mean value of saturated area
(%) in La Tejeria, Cidacos and Arga were 1.5%, 1.7% and 6.7% respec-
tively. Largest saturated areas were found in Arga, about four times
the values obtained for the other 2 catchments. Highest saturation
variability rates were also found in Arga simulation, with a stan-
dard deviation of 6%, while variation was 4.3% in La Tejeria and
3.3% in Cidacos.

Fig. 9 also depicts the water table depth, whose principal statis-
tical measures (mean, WTDm, and standard deviation, WTDSD) are
detailed as follows: WTDm in La Tejeria was 0.71 m, in Cidacos
1.14 m and in Arga 0.63 m. Regarding water table variation, WTDSD

in La Tejeria was 0.27 m, in Cidacos 0.31 m and in Arga 0.19 m. As
in Figs. 8 and 9 La Tejeria and Arga results are those obtained with
CON calibration approach, while Cidacos’s ones correspond to RND
strategy. As it was commented for Table 4, and can be observed in
Fig. 9, RND approach was able to maintain a stable behavior of
WTD in Cidacos. Water table depth, especially its minimum values
(i.e. closer to surface, mainly during persistent winter events) is a
key factor in TOPLATS runoff generation. When WTD reaches the
value of wc (m), simulated runoff increases non-linearly, affecting
remarkably simulation efficiency results and model performance.
Cidacos, the driest catchment had the deepest WTDm (1.14 m)
and also the highest WTDSD. Arga had the most stable WTD with
a standard deviation of just 0.19 m.

4.4.2. Streamflow simulation

� Daily streamflow
Results presented hereafter (Figs. 10–12) for La Tejeria and Arga

also correspond to the conventional CAL/VAL strategy, while Cida-
cos results are the ones obtained with RND. Streamflow results are
presented in three types of plots: time series (Fig. 10), simulated vs
observed scatter plots (Fig. 11) and streamflow duration curves
(Fig. 12) to allow for detailed TOPLATS performance analysis. On
the time-series plot (Fig. 10) it can be observed that almost no



Fig. 9. TOPLATS daily simulated plot: (1) water table depth (m), and (2) Percentage of catchment area with fully saturated soil profile (%) for (a) La Tejeria, (b) Cidacos and (c)
Arga catchments.

Fig. 10. Daily rainfall, observed streamflow and simulated streamflow in: (a) La Tejeria, (b) Cidacos and (c) Arga.
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Fig. 11. Scatter plot of daily observed and simulated streamflow (mm/day) in: (a) La Tejeria, (b) Cidacos and (c) Arga.

Fig. 12. Daily streamflow duration curves (observed vs simulated) in (a) La Tejeria, (b) Cidacos, (c) Arga and (d) catchments comparison.
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runoff was simulated during the warming-up one-year period in all
three catchments. This was due to the initial value defined for the
water table depth (2 m). Shallower initial WTD values resulted in a
more rapid model response but worse overall results for the
remaining period. Large inter-annual variability (Fig. 10) was
observed in terms of streamflow in la Tejeria and Cidacos. Despite
this large variability, TOPLATS was able to respond adequately,
particularly in La Tejeria. Streamflow behavior was much more
stable in Arga, allowing better model response, but TOPLATS faced
difficulties on Cidacos extreme storm events simulation.

Scatter plots (Fig. 11) illustrate very clearly how few streamflow
peaks affected NSE results. In Cidacos, two high peak flows were
very accurately simulated during the calibration period, and
account large responsibility for the NSE = 0.91 efficiency obtained
(Table 4). But on the other hand, main peak events during valida-
tion were poorly simulated (Cidacos validation: NSE = 0.25). NSE
validation efficiency results were extremely affected by just 7 days
data with large simulation miscalculations (out of a 4383 days sim-
ulation), while validation Pbias remained very low (3%). In La Teje-
ria and Arga there were no such differences in CAL and VAL events
and NSE results were more balanced (Table 4).

Daily simulated streamflow was also evaluated according to
detailed specific flow ranges (high flows, mid-range flows and
low flows) in flow duration curves comparing simulated and
observed flows (Fig. 12). Main divergences were found in low rate
flows in La Tejeria, where TOPLATS clearly over-estimated
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observed streamflows. This was apparent, since up to 14% of the
studied days (mostly summer periods) no streamflow was
recorded at all, but TOPLATS kept simulating small streamflow
amounts. In any case, this overestimation of low flows, has a very
limited impact on total volume and efficiency results. In La Tejeria,
also a slight underestimation of modeled flows was found during
catchment’s moist conditions (10–50%). In Cidacos, largest discrep-
ancies (underestimation) between simulated and observed values
were found on the 40% of lower-flow days. The same pattern
applied for most of the days, where TOPLATS underestimated in
Fig. 13. Comparison of monthly observed and simulated streamflow results: (1) NSE (dot
Cidacos and Arga.
most of the flow ranges, yet the difference decreased towards high
flows. During the driest 1.5% of the days, no streamflow was
observed in Cidacos, so the model showed overestimation on that
range (right tale of the curve, 97–100%). Arga presented the best
agreement between simulated and observed flows in all stream-
flow level ranges but TOPLATS tended to underestimate mid-
range flows. When all catchment results are plotted together, it
is observed that Arga (wettest catchment) patterns clearly differ-
entiate from the other two due to its highest rainfall conditions.
On the highest streamflow data range, it could be observed that
s), (2) Pbias (%) (bar plot), and (3) Volume bias (mm) (line plot) results in La Tejeria,



Table 5
Hourly streamflow simulation efficiency (NSE1 and NSE) and bias results achieved
after optimization with the conventional (CON) calibration approach.

Catchment NSE1 NSE Pbias

CAL VAL CAL VAL CAL VAL
– – – – % %

1. La Tejeria 0.56 0.58 0.55 0.66 8 5
2. Cidacos 0.48 0.51 0.41 0.77 �6 8
3. Arga 0.51 0.52 0.64 0.66 1 4
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Arga had the most intense (mm/day) runoff events and Cidacos the
least. High flow rate range, as presented in the catchments’ com-
parative plot of Fig. 12, include the 10% of the days with highest
streamflow values (438 days).

� Monthly streamflow

Daily observed and simulated streamflow values were aggre-
gated on monthly basis to obtain monthly results. These monthly
results are useful to understand and evaluate model performance
at a seasonal time-scale, and for different modeling purposes
(e.g. for hydrological resource management). Three types of
monthly streamflow simulation results are shown in Fig. 13: (1)
monthly NSE, (2) monthly Pbias (%) and (3) Volume bias
(mm/month).

Results obtained in La Tejeria showed a high 0.94 overall NSE
value. In nine out of twelve months, results were over 0.9 in terms
of NSE. The lowest efficiency was found in October (0.6), at the
beginning of the hydrological year. The largest Pbias was found
during the simulation of summer and autumn months, when
intense rainfall events occur while TOPLATS simulated water table
is at its deeper values, and saturated catchment area values are
low. Since Pbias is expressed as percentage, its largest values were
obtained in August, when streamflow was largely overestimated
(77%). However, this high Pbias value corresponded with a very
minor errors in volume units (mm/month), as commented for daily
results (Fig. 12). Largest Volume bias in La Tejeria were obtained in
the March–April (spring) period, where TOPLATS underestimated
monthly streamflow. That streamflow underestimation in March
months implied a lower (0.80) NSE.

NSE monthly median was 0.74 in Cidacos. In this catchment,
two different periods could be distinguished in terms of monthly
efficiency results. First, from December to April, TOPLATS offered
a very accurate performance, reaching NSE values over 0.9 for each
month of that winter-spring five months period. On the contrary,
the model was unable to properly simulate low flows typical in
August, September and October. In Cidacos, the model clearly
tended to overestimate streamflow for dry periods. Mean monthly
overestimation from June to October was 57% (probably also
related to river extractions for irrigation purposes). In terms of
streamflow volumetric error, largest discrepancies, but still rather
low, were found in March and April, when the model underesti-
mated flow volumes. That systematic underestimation was simi-
larly observed for the whole winter-spring period.

Out of the three evaluated catchments, TOPLATS performed
worst in Arga, in terms of monthly efficiency results. Monthly med-
ian NSE in Arga was 0.60. This catchment showed the largest NSE
variability between months, offering its best NSE results in Febru-
Fig. 14. Scatter plot of hourly observed and simulated stream
ary (0.85) and March (0.9). Results indicated a clear pattern of
modeled overestimation during winter months (December–Janu
ary–February) and underestimation in autumn (October–Novem-
ber) and spring (March–April–May).

When daily and monthly NSE were compared, it was observed
that best results in both cases were obtained in La Tejeria. In Cida-
cos, monthly results outperformed clearly daily NSE, while the
opposite occurred in Arga, where very low efficiencies, mainly in
November and December caused low monthly NSE. Bormann
(2006b) also performed TOPLATS applications in several catch-
ments in Germany, ranging from 63 to 134 km2. Daily NSE results
presented, varied from 0.59 to 0.73 on the calibration period and
from 0.52 to 0.69 on validation years. Efficiency results were found
to increase on that study, reaching 0.76–0.85 on weekly analysis
and 0.82–0.90 on monthly evaluation.
4.5. Hourly vs daily streamflow simulation

Hourly simulation of the catchments was also similarly per-
formed for the same 12 years (2000–2012) period, with a total of
96,432 h simulation. At this time-scale, only the CON calibration
period method was applied, as no abnormal behavior of the model
was found in any of the catchments. Similarly to daily analysis, the
first year was considered as warming-up. Hourly streamflow sim-
ulated values (mm/h) versus observed data (mm/h) are first pre-
sented (Fig. 14) in a scatter plot. While in La Tejeria no clear
pattern of over or under-estimation could be identified, in Cidacos
and Arga it was observed that extreme events were underesti-
mated by TOPLATS. As observed in Fig. 14, for most of the time-
series, Cidacos had the lowest streamflow values (most points
below 0.5 mm/h), but also the highest intensity events were
observed in that catchment.

Best NSE1 results obtained for hourly calibration period (Table 5)
were similar to their corresponding daily results (Table 4) in Cida-
cos (0.48 vs 0.53) and Arga (0.51 vs 0.50). On the contrary, in La
Tejeria, NSE1 was significantly lower for hourly calibration (0.56
flow (mm/h) in: (a) La Tejeria, (b) Cidacos and (c) Arga.
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vs 0.71). For the validation period, NSE1 hourly results were nota-
bly better in Cidacos (0.51 vs 0.35) and slightly better Arga (0.52 vs
0.49), but hourly results performed worse in La Tejeria (0.58 vs
0.65).

Analysis of NSE performance concluded that in La Tejeria daily
simulations outperformed substantially hourly simulations. This
results can be explained by the small size of La Tejeria, with very
short runoff evacuation times (hours), which may not be properly
captured by the model when run at hourly time step, even though
the model was added a specific routing capability. In Cidacos, the
NSE value of 0.77 obtained in validation when run hourly con-
trasted with the poor value obtained with daily time-step (0.09).
NSE results in Arga were quite stable from calibration to validation
periods at both running time-scales: the difference in daily simula-
tion was �0.03 (calibration NSE was 0.63 and validation 0.6) and
+0.02 in hourly results (Table 5). Total simulation NSE (CAL
+ VAL) in Arga was 0.62 for daily data and 0.65 for hourly. Hourly
simulation with TOPLATS was also performed by Loosvelt et al.
(2015) on a 91 km2 catchment in Belgium, reporting NSE = 0.33
for CAL and 0.44 for VAL.

Application of MSPM in combination with NSE1 as objective
function proved to achieve excellent Pbias reduction (all volume
errors lower than 8%, Table 5) allowing TOPLATS to be used as a
consistent water resources management tool for continuous simu-
lation both at the daily and hourly scale.
5. Conclusions

The evaluation of TOPLATS performed in this research provides
model users with useful guidelines to: (1) identify the model
parameters having the largest influence on main hydrological pro-
cesses and streamflow simulation efficiency; (2) perform an effi-
cient calibration of the model through an automatic calibration
algorithm applied with a multi-start approach; (3) gain insight
on the performance, advantages and limitations of the model when
applied at daily and hourly time-scales and (4) be aware of the
importance of climatological variability to be contained on the cal-
ibration period in Mediterranean catchments.

Sensitivity analyses performed with Morris and Sobol methods
yielded very similar results and concluded that 3 parameters:
Brooks–Corey Pore Size distribution Index (B), Bubbling pressure
(wc) and Hydraulic conductivity decay (f) had the overall largest
influence on the hydrological processes (surface runoff, baseflow,
evapotranspiration and surface zone soil moisture dynamics) and
streamflow simulation efficiency. Thus, their inclusion in any
TOPLATS calibration is recommended. Morris method gave similar
results to Sobol, with lower computational requirements, which
makes it a reliable and suitable method to be applied on complex
and largely parameterized physically based models similar to
TOPLATS.

Regardless of catchment size or climate influence, mean surface
soil moisture was found to be controlled by B, and its dynamics by
f. Streamflow generation on wet catchments (Arga and La Tejeria)
seemed to be mainly influenced by wc, whereas the drier catch-
ment (Cidacos) was largely affected by B.

Model calibration achieved a substantial efficiency improve-
ment in the three evaluated catchments, and reduced Pbias to val-
ues below 10% (in most cases below 5%). Calibration improved
both average flows and high peaks simulation results, in both cal-
ibration and validation periods.

Climatic variations between calibration and validation periods
compromise model performance and parameter stability, particu-
larly in arid zones. A random and discontinuous period selection
strategy was applied in this study to overcome this issue, which
outperformed model calibration with the conventional calibration
and validation period selection strategy. This random approach is
thus recommended when large climate variability is found
between calibration and validation periods, and particularly when
run on daily basis.

In terms of streamflow simulation efficiency, when TOPLATS
was run in hourly and daily basis, catchment size had an influence
on the results. Mean Nash & Sutcliffe efficiency of calibration and
validation periods on the experimental micro-catchment studied
(La Tejeria) was higher in hourly basis (NSE 0.77) than in daily
basis (NSE 0.60). The opposite occurred on the largest catchment
(Arga) where hourly efficiency (0.65) outperformed daily results
(NSE 0.62). On the intermediate size catchment (Cidacos), effi-
ciency results were very similar (NSE 0.58 and 0.59). Surface soil
moisture behavior (characterized by rapid variations) seemed not
to be properly simulated at large time scales, affecting model
behavior notoriously.

Monthly efficiency results showed that TOPLATS performed
optimally in the two smallest catchments, but some systematic
deviation was found on the largest catchment, uncovering a clear
overestimation pattern during winter and underestimation in
autumn and spring. This seasonal deviations could be compensated
by implementing data assimilation techniques and using observed
streamflow, remote sensing or in-situ soil moisture data, to update
model variables (i.e. soil moisture, water balances) in order to cor-
rect that systematic deviated pattern.
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